SVGMath
Process page by:- SVGMath: <svg> tags
- SVGMath: <img> tags
- MathJax HTML
- MathJax SVG
- KaTeX
What's this page about? ➤
Brief Overview
SVGMath is an SVG-based approach to fast loading of beautiful math on the Web.
The math you see on this demo page consists of pre-generated and cached SVGs, so there is no javascript processing required when the page loads, resulting in extremely fast page load.
You can also view how this page performs when processed using MathJax or KaTeX, by clicking the buttons above. View the console for performance and DOM element information.
Each version looks almost identical, but there are big differences in page load, number of DOM elements and bandwidth.
See: SVGMath Explanation and Stats for further details.
NOTE: By default, MathJax (v.3) and KaTeX do not handle wide equations well on a phone. MathJax just hides the overflow, and KaTeX ends up with overlapping elements. In SVGMath, I implemented a horizontal scrollbar method to handle this.
On with the demo.
[Demo starts]
Kepler's Laws Derived from Newton's Laws
Content author: George W Benthien
Mathematical Preliminaries
Consider a Cartesian coordinate system with the sun at the origin. Let denote the position of a planet. Clearly x, y, and z are functions of the time t. We define the position vector r, the velocity vector v, and the acceleration vector a by
Here the dots represent differentiation with respect to time and i, j, k are the unit vectors in the x, y, z directions respectively. Newton's law of motion can be written
where m is the mass of the planet and F is the force on the planet. Let be a unit vector in the r direction. Then Newton's law of gravitation applied to the earth and sun is given by
where G is a constant, M is the mass of the sun, and r is the magnitude of r. Combining equations (1) and (2), we get
Planet moves in a plane
By the product rule for differentiation
since a is in the same direction as r by equation (3). Here the symbol represents the vector cross-product. Thus, the vector
is a constant. It follows that r and v lie in the plane orthogonal to h. We will choose our coordinate system so that k is in the direction h. Thus,
Kepler's Second Law
The area swept out by the position vector in a small increment of time . is the small change of angle.
The area OAB is approximately equal to the area of the right triangle OAC for small . Since the length of the line AC is approximately and the length of the line OC is approximately r, we have
Dividing both sides by and letting approach zero, we see that
Since the planet moves in the plane, we have
where the polar coordinates r and are functions of t. The time derivative of r is given by
Substituting equations (6) and (7) into equation (4), we obtain
Here we have used the fact that and . It follows from equations (5) and (8) that
This is Kepler's second law.
Definition and properties of an ellipse
Before we look at the derivation of Kepler's first law, we need to define what we mean by an ellipse, and look at some of its properties. One common way of drawing an ellipse is to pin the two ends of a string, place a pencil in the loop, and trace a curve while keeping the string taught. Clearly the resulting curve has the property that the sum of the distances from any point on the curve to the two fixed points is a constant (the length of the string). The resulting curve is called an ellipse and the two fixed points are called the foci of the ellipse. An ellipse in which the foci are at and , and corresponds to the length of the string.
The construction of the ellipse can be represented mathematically as follows
where .
This equation can be rearranged as follows
Squaring both sides, we get
Solving for the square root term, we obtain
Squaring again, we obtain
or equivalently
Dividing through by , we obtain
We define the eccentricity e of the ellipse by . The eccentricity is a measure of the elongation of the ellipse. The eccentricity of the earth's orbit is small (.0167). Thus, its orbit is nearly circular. Venus has an even smaller eccentricity (.007) and Mars has a larger eccentricity (.0934). The planet with the largest eccentricity is Mercury (.2056). Let us define b by
Then, equation (11) can be written in the standard form
This is the form that is usually specified for an ellipse. It is easy to see that a is one-half the length of the ellipse's major axis and b is one-half the length of the ellipse's minor axis.
An ellipse also has a simple form in polar coordinates if we take our origin to be one of the foci.
Using the definition of an ellipse in terms of the sum of the distances from the two foci being constant, we can write
Solving for the square root term and expanding the square terms, we get
Squaring this equation gives
or equivalently
Solving for r, we obtain
where
Equation (15) is the desired representation of the ellipse in polar coordinates.
We can also derive our original definition of an ellipse from the polar form. Suppose r and satisfy
where and .
We define a and c by
and
.
It follows from equation (17) that r has a maximum value of at . Thus, using equation (18) we see that
Using equation (18), equation (17) can be rearranged as follows
Since , this equation can be written
Multiplying both sides by a, we obtain
Multiplying this equation by four and adding to both sides, we obtain
This equation can be rearranged as
or equivalently
Taking the square root of both sides, we obtain
which is the defining equation for the ellipse [see equation (14)]. Thus, equation (17) defines an ellipse with the origin at one focus. Let . Then it follows from equation (18) that
Hamilton's Theorem
In this section we will show that the velocity vector v moves on a circle. Since , it follows from equation (6) that equation (3) can be written
Combining equations (8) and (20), we obtain
By the chain rule for differentiation
It follows from equations (21) and (22) that
Integrating this equation, we obtain
where is a constant. It follows that , i.e., v moves on the circle centered at with radius .
Kepler's first law
We choose our coordinate system so that j is in the direction , i.e.,
Thus, equation (23) becomes
where . Substituting equation (25) into equation (4) and using equation (6), we get
and hence
where
In order for r to remain finite for all , we must have . Equation (26) is the equation of an ellipse in polar coordinates with the origin at one focus. This completes the proof of Kepler's first law.
Kepler's third law
Since the rate that area is swept out by the position vector is the constant [see equation (9)], it follows that
where T is the period of the motion and A is the area of the ellipse. Since translation doesn't change the area, we can consider the area of the ellipse
We will calculate the area of the first quadrant (, ) and multiply by four. Solving for y as a function of x from equation (29), we obtain
Thus, the area A is given by
If we make the change of variables () in the integral, we obtain
Substituting this value for A into equation (28), we obtain
and hence
Using equations (18), (19), and (27), we can write the expression for in equation (32) as follows
Equation (33) will establish Kepler's third law if we can show that a is the average distance between a point on the ellipse and the focus where the sun is located. The distance D of a point on the ellipse to the focus is given by
It follows from equation (13) that
Combining this equation with equation (34), we get
It follows from equation (12) that
Using these relations, equation (35) becomes
Since and , it follows that . Thus
For the upper half of the ellipse the average distance is given by
since
The average distance over the lower half of the ellipse is the same; therefore, equation (38) represents the average distance over the ellipse. Equations (33) and (38) combine to give Keplers third law.
Absolute value case
This one has absolute values signs (identical at the beginning and end, of course) which required different handling:
Other bracket types, like ( ) or { } have different left and right forms, but | | have the same, so the regexp had to be changed for such a case.