KaTeX-DB demo

What's this page about?

Brief Overview

Katex-DB uses a database approach to fast loading of beautiful math on the Web.

The math you see on the this demo page consists of pre-generated and saved KaTeX spans, so there is no javascript processing required when the page loads (except for a tiny script which aligns equal signs), resulting in extremely fast page load.

GTMetrix gives the page a 100% performance score, download and processing happens in less then 400 ms, the javascript blocking time is 0 ms, and there's no cumulative layout shift.

There are 7 requests only (the page, 5 fonts and the favicon), for a total payload of 110 kB.

As a comparison, this Khan Academy page has only 7 math expressions rendered by KaTeX, yet takes 2.6 s to load, has 115 requests (mostly .JS files), and the payload is 2.14 MB with a javascript blocking time of 1.1 s.

NOTE: The text on this demo page is obfuscated for copyright reasons.

On with the demo.

Gur tencu bs y=3x\displaystyle{y}={3}{x}, jvgu gur nern haqre gur "pheir" orgjrra x=0\displaystyle{x}={0} to x=1\displaystyle{x}={1} funqrq.

Jura gur funqrq nern vf ebgngrq 360° nobhg gur x\displaystyle{x}-nkvf, n ibyhzr vf trarengrq.

Gur erfhygvat fbyvq vf n pbar:

Gur ibyhzr bs n plyvaqre vf tvira ol:

V=πr2h\displaystyle{V}=\pi{r}^{2}{h}

Orpnhfr radius=r=y\displaystyle\text{radius}={r}={y} naq rnpu qvfx vf dx\displaystyle{\left.{d}{x}\right.} uvtu, jr abgvpr gung gur ibyhzr bs rnpu fyvpr vf:

V=πy2 dx\displaystyle{V}=\pi{y}^{2}\ {\left.{d}{x}\right.}

Nqqvat gur ibyhzrf bs gur qvfxf (jvgu vasvavgryl fznyy dx\displaystyle{\left.{d}{x}\right.}), jr bognva gur sbezhyn:

V=πaby2dx\displaystyle{V}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.} juvpu zrnaf V=πab{f(x)}2dx\displaystyle{V}=\pi{\int_{{a}}^{{b}}}{\left\lbrace f{{\left({x}\right)}}\right\rbrace}^{2}{\left.{d}{x}\right.}

jurer:

y=f(x)\displaystyle{y}= f{{\left({x}\right)}} vf gur rdhngvba bs gur pheir jubfr nern vf orvat ebgngrq

a\displaystyle{a} naq b\displaystyle{b} ner gur yvzvgf bs gur nern orvat ebgngrq

dx\displaystyle{\left.{d}{x}\right.} fubjf gung gur nern vf orvat ebgngrq nobhg gur x\displaystyle{x}-nkvf

ABGR: Ba guvf cntr jr hfr gur qvfx zrgubq naq jnfure zrgubq (jurer jr phg gur funcr vagb pvephyne fyvprf) bayl, naq zrrg gur Furyy Zrgubq arkg).

Nccylvat gur sbezhyn V=πaby2dx\displaystyle{V}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.} gb gur rneyvre rknzcyr, jr unir:

(3) Vol=πaby2dx\displaystyle\text{Vol}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.}

=π01(3x)2dx\displaystyle=\pi{\int_{{0}}^{{1}}}{\left({3}{x}\right)}^{2}{\left.{d}{x}\right.}

=π019x2dx\displaystyle=\pi{\int_{{0}}^{{1}}}{9}{x}^{2}{\left.{d}{x}\right.}

=π[3x3]01\displaystyle=\pi{{\left[{3}{x}^{3}\right]}_{{0}}^{{1}}}

=π[3]π[0]\displaystyle=\pi{\left[{3}\right]}-\pi{\left[{0}\right]}

=3π unit3\displaystyle={3}\pi\ \text{unit}^{3}

PURPX: Qbrf gur zrgubq jbex? Jr pna svaq gur ibyhzr bs gur pbar hfvat

Vol=πr2h3\displaystyle\text{Vol}=\frac{{\pi{r}^{2}{h}}}{{3}}

=π(3)2(1)3\displaystyle=\frac{{\pi{\left({3}\right)}^{2}{\left({1}\right)}}}{{3}}

=9π3\displaystyle=\frac{{{9}\pi}}{{3}}

=3π unit3\displaystyle={3}\pi\ \text{unit}^{3} (Purpxf BX.)

Rknzcyr 2

Svaq gur ibyhzr vs gur nern obhaqrq ol gur pheir y=x3+1\displaystyle{y}={x}^{3}+{1}, gur x\displaystyle{x}-nkvf naq gur yvzvgf bs x=0\displaystyle{x}={0} naq x=3\displaystyle{x}={3} vf ebgngrq nebhaq gur x\displaystyle{x}-nkvf.

Nern haqre gur pheir y=x3+1\displaystyle{y}={x}^{3}+{1} sebz x=0\displaystyle{x}={0} to x=3\displaystyle{x}={3} ebgngrq nebhaq gur x\displaystyle{x}-nkvf, fubjvat n glcvpny qvfx.

Nccylvat gur sbezhyn sbe gur fbyvq bs eribyhgvba, jr trg

V=πaby2dx\displaystyle{V}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.}

=π03(x3+1)2dx\displaystyle=\pi{\int_{{0}}^{{3}}}{\left({x}^{3}+{1}\right)}^{2}{\left.{d}{x}\right.}

=π03(x6+2x3+1)dx\displaystyle=\pi{\int_{{0}}^{{3}}}{\left({x}^{6}+{2}{x}^{3}+{1}\right)}{\left.{d}{x}\right.}

=π[x77+x42+x]03\displaystyle=\pi{{\left[\frac{{{x}^{7}}}{{{7}}}+\frac{{{x}^{4}}}{{{2}}}+{x}\right]}_{{0}}^{{3}}}

=π(355.930)\displaystyle=\pi{\left({\left|{355.93}\right|}-{\left|{0}\right|}\right)}

=1118.2 units3\displaystyle={1118.2}\ \text{units}^{3}

Ibyhzr ol Ebgngvat gur Nern Rapybfrq Orgjrra 2 Pheirf

Vs jr unir 2 pheirf y2\displaystyle{y}_{{2}} naq y1\displaystyle{y}_{{1}} gung rapybfr fbzr nern naq jr ebgngr gung nern nebhaq gur x\displaystyle{x}-nkvf, gura gur ibyhzr bs gur fbyvq sbezrq vf tvira ol:

Volume=πab[(y2)2(y1)2]dx\displaystyle\text{Volume}=\pi{\int_{{a}}^{{b}}}{\left[{\left({y}_{{2}}\right)}^{2}-{\left({y}_{{1}}\right)}^{2}\right]}{\left.{d}{x}\right.}

Va gur sbyybjvat trareny tencu, y2\displaystyle{y}_{{2}} vf nobir y1\displaystyle{y}_{{1}}. Gur ybjre naq hccre yvzvgf sbe gur ertvba gb or ebgngrq ner vaqvpngrq ol gur iregvpny yvarf ng x=a\displaystyle{x}={a} naq x=b\displaystyle{x}={b}.

Jura jr ebgngr fhpu n funcr nebhaq na nkvf, naq gnxr fyvprf, gur erfhyg vf n jnfure funcr (jvgu n ebhaq ubyr va gur zvqqyr).

Rknzcyr 3

N phc-yvxr bowrpg vf znqr ol ebgngvat gur nern orgjrra y=2x2\displaystyle{y}={2}{x}^{2} naq y=x+1\displaystyle{y}={x}+{1} jvgu x0\displaystyle{x}\ge{0} nebhaq gur x\displaystyle{x}-nkvf. Svaq gur ibyhzr bs gur zngrevny arrqrq gb znxr gur phc. Havgf ner cm\displaystyle\text{cm}.

Nern obhaqrq ol y=2x2\displaystyle{y}={2}{x}^{2} (gur obggbz pheir), y=x+1\displaystyle{y}={x}+{1} (gur yvar nobir), naq x=0\displaystyle{x}={0}, fubjvat n glcvpny erpgnatyr.

Gur ybjre yvzvg bs vagrtengvba vf x=0\displaystyle{x}={0} (fvapr gur dhrfgvba fnlf x0\displaystyle{x}\ge{0}).

Arkg, jr arrq gb svaq jurer gur pheirf vagrefrpg fb jr xabj gur hccre yvzvg bs vagrtengvba.

Rdhngvat gur 2 rkcerffvbaf naq fbyivat:

Volume=π01[(x+1)2(2x2)2]dx\displaystyle\text{Volume}=\pi{\int_{{0}}^{{1}}}{\left[{\left({x}+{1}\right)}^{2}-{\left({2}{x}^{2}\right)}^{2}\right]}{\left.{d}{x}\right.}

=π01[(x2+2x+1)(4x4)]dx\displaystyle=\pi{\int_{{0}}^{{1}}}{\left[{\left({x}^{2}+{2}{x}+{1}\right)}-{\left({4}{x}^{4}\right)}\right]}{\left.{d}{x}\right.}

=π[x33+x2+x4x55]01\displaystyle=\pi{{\left[\frac{{{x}^{3}}}{{{3}}}+{x}^{2}+{x}-\frac{{{4}{x}^{5}}}{{{5}}}\right]}_{{0}}^{{1}}}

=π[(13+1+145)(0)]\displaystyle=\pi{\left[{\left(\frac{1}{{3}}+{1}+{1}-\frac{4}{{5}}\right)}-{\left({0}\right)}\right]}

=π[5+301215]\displaystyle=\pi{\left[\frac{{{5}+{30}-{12}}}{{{15}}}\right]}

=23π15\displaystyle=\frac{{{23}\pi}}{{{15}}}

=4.817 cm3\displaystyle={4.817}\ \text{cm}^{3}

Sbe Z1 (gur hccre cneg bs gur pvephvg), jr unir:

XC=12π(60)(1.20×106)\displaystyle{X}_{{C}}=\frac{1}{{{2}\pi{\left({60}\right)}{\left({1.20}\times{10}^{ -{{6}}}\right)}}}

=2210.485 Ω\displaystyle={2210.485}\ \Omega

Jura gur funqrq nern vf ebgngrq 360° nobhg gur y\displaystyle{y}-nkvf, gur ibyhzr gung vf trarengrq pna or sbhaq ol:

V=πcdx2dy\displaystyle{V}=\pi{\int_{{c}}^{{d}}}{x}^{2}{\left.{d}{y}\right.} juvpu zrnaf V=πcd{f(y)}2dy\displaystyle{V}=\pi{\int_{{c}}^{{d}}}{\left\lbrace f{{\left({y}\right)}}\right\rbrace}^{2}{\left.{d}{y}\right.}

jurer:

x=f(y)\displaystyle{x}= f{{\left({y}\right)}} vf gur rdhngvba bs gur pheir rkcerffrq va grezf bs y\displaystyle{y}

c\displaystyle{c} naq d\displaystyle{d} ner gur hccre naq ybjre l yvzvgf bs gur nern orvat ebgngrq

dy\displaystyle{\left.{d}{y}\right.} fubjf gung gur nern vf orvat ebgngrq nobhg gur y\displaystyle{y}-nkvf

Rknzcyr 4

Svaq gur ibyhzr bs gur fbyvq bs eribyhgvba trarengrq ol ebgngvat gur pheir y=x3\displaystyle{y}={x}^{3} orgjrra y=0\displaystyle{y}={0} naq y=4\displaystyle{y}={4} nobhg gur y\displaystyle{y}-nkvf.

Gur tencu bs y=x\displaystyle{y}={x}, jvgu gur nern haqre gur "pheir" orgjrra x=0\displaystyle{x}={0} to x=2\displaystyle{x}={2} funqrq.

Urapr, gur ibyhzr trarengrq pna or sbhaq hfvat gur sbezhyn sbe ibyhzr bs fbyvq bs eribyhgvba:

Vol=πaby2dx\displaystyle\text{Vol}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.}

=π02(x)2dx\displaystyle=\pi{\int_{{0}}^{{2}}}{\left({x}\right)}^{2}{\left.{d}{x}\right.}

=π[x33]02\displaystyle=\pi{{\left[\frac{{{x}^{3}}}{{{3}}}\right]}_{{0}}^{{2}}}

=π[83]π[0]\displaystyle=\pi{\left[\frac{{{8}}}{{{3}}}\right]}-\pi{\left[{0}\right]}

=83π units3\displaystyle=\frac{8}{{3}}\pi\ \text{units}^{3}

8.378 units3\displaystyle\approx{8.378}\ \text{units}^{3}

Gur tencu bs y=2xx2\displaystyle{y}={2}{x}-{x}^{2}, jvgu gur nern haqre gur pheir orgjrra x=0\displaystyle{x}={0} to x=2\displaystyle{x}={2} funqrq.

Gur yvar y=0\displaystyle{y}={0} fvzcyl zrnaf gur x\displaystyle{x}-nkvf.

Gur ibyhzr trarengrq vf:

Vol=πaby2dx\displaystyle\text{Vol}=\pi{\int_{{a}}^{{b}}}{y}^{2}{\left.{d}{x}\right.}

=π02(2xx2)2dx\displaystyle=\pi{\int_{{0}}^{{2}}}{\left({2}{x}-{x}^{2}\right)}^{2}{\left.{d}{x}\right.}

=π02(4x24x3+x4)dx\displaystyle=\pi{\int_{{0}}^{{2}}}{\left({4}{x}^{2}-{4}{x}^{3}+{x}^{4}\right)}{\left.{d}{x}\right.}

=π[4x334x44+x55]02\displaystyle=\pi{{\left[\frac{{{4}{x}^{3}}}{{{3}}}-\frac{{{4}{x}^{4}}}{{{4}}}+\frac{{{x}^{5}}}{{{5}}}\right]}_{{0}}^{{2}}}

=π[32316+325]π[0]\displaystyle=\pi{\left[\frac{32}{{3}}-{16}+\frac{32}{{5}}\right]}-\pi{\left[{0}\right]}

=1615π units3\displaystyle=\frac{{{16}}}{{{15}}}\pi\ \text{units}^{3}

3.351 units3\displaystyle\approx{3.351}\ \text{units}^{3}

Nccyvpngvbaf

1. Ibyhzr bs n jvar pnfx

N jvar pnfx unf n enqvhf ng gur gbc bs 30 pz naq n enqvhf ng gur zvqqyr bs 40 pz. Gur urvtug bs gur pnfx vf 1 z. Jung vf gur ibyhzr bs gur pnfx (va Y), nffhzvat gung gur funcr bs gur fvqrf vf cnenobyvp?

Jr arrq gb svaq gur rdhngvba bs n cnenobyn jvgu iregrk ng (0,40)\displaystyle{\left({0},{40}\right)} naq cnffvat guebhtu (50,30)\displaystyle{\left({50},{30}\right)}.

Jr hfr gur sbezhyn:

Fb gur rdhngvba bs gur fvqr bs gur oneery vf

y=x2250+40\displaystyle{y}=-\frac{{{x}^{2}}}{{{250}}}+{40}

Jr arrq gb svaq gur ibyhzr bs gur pnfx juvpu vf trarengrq jura jr ebgngr guvf cnenobyn orgjrra x = -50 naq x = 50 nebhaq gur x-nkvf.

2. Ibyhzr bs n jngrezryba

N jngrezryba unf na ryyvcfbvqny funcr jvgu znwbe nkvf 28 pz naq zvabe nkvf 25 pz. Svaq vgf ibyhzr.

Uvfgbevpny Nccebnpu: Orsber pnyphyhf, bar jnl bs nccebkvzngvat gur ibyhzr jbhyq or gb fyvpr gur jngrezryba (fnl va 2 pz guvpx fyvprf) naq nqq hc gur ibyhzrf bs rnpu slice\displaystyle{s}{l}{i}{c}{e} hfvat V=πr2h.\displaystyle{V}=\pi{r}^{2}{h}.

Vagrerfgvatyl, Nepuvzrqrf (gur bar jub snzbhfyl whzcrq bhg bs uvf ongu naq ena qbja gur fgerrg fubhgvat "Rherxn! V'ir tbg vg") hfrq guvf nccebnpu gb svaq ibyhzrf bs fcurerf nebhaq 200 OP. Gur grpuavdhr jnf nyzbfg sbetbggra hagvy gur rneyl 1700f jura pnyphyhf jnf qrirybcrq ol Arjgba naq Yrvoavm.

Jr frr ubj gb qb gur ceboyrz hfvat obgu nccebnpurf.

Ibyhzr hfvat uvfgbevpny zrgubq:

Orpnhfr gur zryba vf flzzrgevpny, jr pna jbex bhg gur ibyhzr bs bar unys bs gur zryba, naq gura qbhoyr bhe nafjre.

Gur enqvv sbe gur fyvprf sbe bar unys bs n cnegvphyne jngrezryba ner sbhaq sebz zrnfherzrag gb or:

0,6.4,8.7,\displaystyle{0},{6.4},{8.7}, 10.3,11.3,\displaystyle{10.3},{11.3}, 12.0,12.4,12.5.\displaystyle{12.0},{12.4},{12.5}.

Gur nccebkvzngr ibyhzr sbe bar unys bs gur zryba hfvat fyvprf 2 pz guvpx jbhyq or:

Vhalf=π×[6.42+8.72+10.32+11.32\displaystyle\text{V}_{{\text{half}}}=\pi\times{\left[{6.4}^{2}+{8.7}^{2}+{10.3}^{2}+{11.3}^{2}\right.} +12.02\displaystyle+{12.0}^{2} +12.42\displaystyle+{12.4}^{2} +12.52]×2\displaystyle{\left.+{12.5}^{2}\right]}\times{2}

=π×8040.44×2\displaystyle=\pi\times{8040.44}\times{2}

=5054.4\displaystyle={5054.4}

Fb gur ibyhzr sbe gur jubyr jngrezryba vf nobhg

5054.4×2=10109 cm3=10.1 L\displaystyle{5054.4}\times{2}={10109}\ \text{cm}^{3}={10.1}\ \text{L}.

Va gur sbyybjvat dhrfgvba, jr frr ubj gb svaq gur "rknpg" inyhr hfvat gur ibyhzr bs fbyvq bs eribyhgvba sbezhyn.

Jr ner gbyq gur zryba vf na ryyvcfbvq. Jr arrq gb svaq gur rdhngvba bs gur pebff-frpgvbany ryyvcfr jvgu znwbe nkvf 28 pz naq zvabe nkvf 25 pz.

Jr hfr gur sbezhyn (sebz gur frpgvba ba ryyvcfrf):

x2a2+y2b2=1\displaystyle\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}={1}

jurer a vf unys gur yratgu bs gur znwbe nkvf naq b vf unys gur yratgu bs gur zvabe nkvf.

Sbe gur ibyhzr sbezhyn, jr jvyy arrq gur rkcerffvba sbe y2 naq vg vf rnfvre gb fbyir sbe guvf abj (orsber fhofgvghgvat bhe a naq b).

x2a2+y2b2=1\displaystyle\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}={1}

b2x2+a2y2=a2b2\displaystyle{b}^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}{b}^{2}

a2y2=a2b2b2x2=b2(a2x2)\displaystyle{a}^{2}{y}^{2}={a}^{2}{b}^{2}-{b}^{2}{x}^{2}={b}^{2}{\left({a}^{2}-{x}^{2}\right)}

y2=b2a2(a2x2)\displaystyle{y}^{2}=\frac{{{b}^{2}}}{{{a}^{2}}}{\left({a}^{2}-{x}^{2}\right)}

Fvapr a=14\displaystyle{a}={14} naq b=12.5\displaystyle{b}={12.5}, jr unir:

y2=12.52142(142x2)\displaystyle{y}^{2}=\frac{{{12.5}^{2}}}{{{14}^{2}}}{\left({14}^{2}-{x}^{2}\right)}

=0.797(196x2)\displaystyle={0.797}{\left({196}-{x}^{2}\right)}

ABGR: Gur a naq b gung jr ner hfvat sbe gur ryyvcfr sbezhyn ner abg gur fnzr a naq b jr hfr va gur vagrtengvba fgrc. Gurl ner pbzcyrgryl qvssrerag cnegf bs gur ceboyrz.

Hfvat guvf, jr pna abj svaq gur ibyhzr hfvat vagrtengvba. (Bapr ntnva jr svaq gur ibyhzr sbe unys naq gura qbhoyr vg ng gur raq).

Vhalf=π014y2dx\displaystyle\text{V}_{{\text{half}}}=\pi{\int_{{0}}^{{14}}}{y}^{2}{\left.{d}{x}\right.}

=π0140.797(196x2)dx\displaystyle=\pi{\int_{{0}}^{{14}}}{0.797}{\left({196}-{x}^{2}\right)}{\left.{d}{x}\right.}

=0.797π014(196x2)dx\displaystyle={0.797}\pi{\int_{{0}}^{{14}}}{\left({196}-{x}^{2}\right)}{\left.{d}{x}\right.}

=2.504[196xx33]014\displaystyle={2.504}{{\left[{196}{x}-\frac{{{x}^{3}}}{{{3}}}\right]}_{{0}}^{{14}}}

=2.504[196(14)1433]\displaystyle={2.504}{\left[{196}{\left({14}\right)}-\frac{{{14}^{3}}}{{{3}}}\right]}

=2.504×1829.33\displaystyle={2.504}\times{1829.33}

=4580.65 cm3\displaystyle={4580.65}\ \text{cm}^{3}

Fb gur jngrezryba'f gbgny ibyhzr vf 2×4580.65=9161 cm3\displaystyle{2}\times{4580.65}={9161}\ \text{cm}^{3} or 9.161 L\displaystyle{9.161}\ \text{L}. Guvf vf nobhg gur fnzr nf jung jr tbg ol fyvpvat gur jngrezryba naq nqqvat gur ibyhzr bs gur fyvprf.

v=dsdt\displaystyle{v}=\frac{{{d}{s}}}{{{\left.{d}{t}\right.}}}

naq gur nppryrengvba sebz gur irybpvgl shapgvba (be qvfcynprzrag shapgvba), hfvat:

a=dvdt=d2sdt2\displaystyle{a}=\frac{{{d}{v}}}{{\left.{d}{t}\right.}}=\frac{{{d}^{2}{s}}}{{{\left.{d}{t}\right.}^{2}}}

Gurfr sbezhynr ner bayl nccebcevngr sbe erpgvyvarne zbgvba (v.r. irybpvgl naq nppryrengvba va n fgenvtug yvar). Guvf vf vanqrdhngr sbe zbfg erny fvghngvbaf, fb jr vagebqhpr urer gur pbaprcg bs pheivyvarne zbgvba, jurer na bowrpg vf zbivat va n cynar nybat n fcrpvsvrq pheirq cngu.

Jr trarenyyl rkcerff gur x naq y pbzcbaragf bs gur zbgvba nf shapgvbaf bs gvzr. Guvf sbez vf pnyyrq cnenzrgevp sbez.

Jr frr gung jr unir sbezrq n pvepyr, prager (0,0)\displaystyle{\left({0},{0}\right)}, enqvhf 1\displaystyle{1} havg.

Abgvpr gung gur inevnoyr t qbrf abg nccrne va gur nkrf bs guvf tencu, whfg gur inevnoyrf x naq y.

Ubevmbagny naq Iregvpny Pbzcbaragf bs Irybpvgl

Gur ubevmbagny pbzcbarag bs gur irybpvgl vf jevggra:

vx=dxdt\displaystyle{v}_{{x}}=\frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}

naq gur iregvpny pbzcbarag vf jevggra:

vy=dydt\displaystyle{v}_{{y}}=\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}

Jr jnag gb svaq gur zntavghqr bs gur erfhygnag irybpvgl v bapr jr xabj gur ubevmbagny naq iregvpny pbzcbaragf. Jr hfr:

v=(vx)2+(vy)2\displaystyle{v}=\sqrt{{{\left({v}_{{x}}\right)}^{2}+{\left({v}_{{y}}\right)}^{2}}}

Gur qverpgvba θ gung gur bowrpg vf zbivat va, vf sbhaq hfvat:

tan θv=vyvx\displaystyle \tan{\ }\theta_{{v}}=\frac{{{v}_{{y}}}}{{{v}_{{x}}}}

Rknzcyr 2

Fb

dxdt=15t2\displaystyle\frac{{\left.{d}{x}\right.}}{{\left.{d}{t}\right.}}={15}{t}^{2}

dxdt=vx=15(10)2=1500 ms1\displaystyle\frac{{\left.{d}{x}\right.}}{{\left.{d}{t}\right.}}={v}_{{x}}={15}{\left({10}\right)}^{2}={1500}\ \text{ms}^{ -{{1}}}

dydt=8t\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{t}\right.}}={8}{t}

dydt=vy=8(10)=80 ms1\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{t}\right.}}={v}_{{y}}={8}{\left({10}\right)}={80}\ \text{ms}^{ -{{1}}}

Fb gur zntavghqr bs gur irybpvgl jvyy or:

v=(vx)2+(vy)2\displaystyle{v}=\sqrt{{{\left({v}_{{x}}\right)}^{2}+{\left({v}_{{y}}\right)}^{2}}}

=15002+802\displaystyle=\sqrt{{{1500}^{2}+{80}^{2}}}

=1502.1 ms1\displaystyle={1502.1}\ \text{ms}^{ -{{1}}}

Abj sbe gur qverpgvba bs gur irybpvgl (vg vf na natyr, eryngvir gb gur cbfvgvir x-nkvf):

tan θv=vyvx=801500\displaystyle \tan{\ }\theta_{{v}}=\frac{{v}_{{y}}}{{v}_{{x}}}=\frac{80}{{1500}}

Fb θv=0.053\displaystyle\theta_{{v}}={0.053} enqvnaf =3.05\displaystyle={3.05}^{\circ}.

Rknzcyr 3

Vs

x=20t2t+1\displaystyle{x}=\frac{{{20}{t}}}{{{2}{t}+{1}}}

naq

y=0.1(t2+t)\displaystyle{y}={0.1}{\left({t}^{2}+{t}\right)}

Nppryrengvba bs n Obql va Pheivyvarne Zbgvba

Gur rkcerffvbaf sbe nppryrengvba ner irel fvzvyne gb gubfr sbe irybpvgl:

Ubevmbagny pbzcbarag bs nppryrengvba:

ax=dvxdt\displaystyle{a}_{{x}}=\frac{{{d}{v}_{{x}}}}{{{\left.{d}{t}\right.}}}

Iregvpny pbzcbarag bs nppryrengvba:

ay=dvydt\displaystyle{a}_{{y}}=\frac{{{d}{v}_{{y}}}}{{{\left.{d}{t}\right.}}}

Zntavghqr bs p(x)=0\displaystyle{p}{\left({x}\right)}={0} nppryrengvba:

a=(ax)2+(ay)2\displaystyle{a}=\sqrt{{{\left({a}_{{x}}\right)}^{2}+{\left({a}_{{y}}\right)}^{2}}}

Qverpgvba bs nppryrengvba:

tan θa=ayax\displaystyle \tan{\ }\theta_{{a}}=\frac{{{a}_{{y}}}}{{{a}_{{x}}}}

Rknzcyr 4

(vv) Svaq gur nppryrengvba bs gur pne ng t=3.0\displaystyle{t}={3.0} frpbaqf.

Jr svaq gur erny (ubevmbagny) naq vzntvanel (iregvpny) pbzcbaragf va grezf bs r (gur yratgu bs gur irpgbe) naq θ (gur natyr znqr jvgu gur erny nkvf):

Sebz Clguntbenf, jr unir: r2=x2+y2\displaystyle{r}^{2}={x}^{2}+{y}^{2} naq onfvp gevtbabzrgel tvirf hf:

tan θ=yx\displaystyle \tan{\ }\theta=\frac{y}{{x}}x=r cosθ\displaystyle{x}={r}\ \cos{\theta} y=r sinθ\displaystyle{y}={r}\ \sin{\theta}

Zhygvcylvat gur ynfg rkcerffvba guebhtubhg ol j\displaystyle{j} tvirf hf:

yj=jr sinθ\displaystyle{y}{j}={j}{r}\ \sin{\theta}

Fb jr pna jevgr gur cbyne sbez bs n pbzcyrk ahzore nf:

x+yj=r(cosθ+j sinθ)\displaystyle{x}+{y}{j}={r}{\left( \cos{\theta}+{j}\ \sin{\theta}\right)}

r vf gur nofbyhgr inyhr (be zbqhyhf) bs gur pbzcyrk ahzore

θ vf gur nethzrag bs gur pbzcyrk ahzore.

Gurer ner gjb bgure jnlf bs jevgvat gur cbyne sbez bs n pbzcyrk ahzore:

r cis θ\displaystyle{r}\ \text{cis}\ \theta [Guvf vf whfg n fubegunaq sbe r(cosθ+j sinθ)\displaystyle{r}{\left( \cos{\theta}+{j}\ \sin{\theta}\right)}]

r  θ\displaystyle{r}\ \angle\ \theta [zrnaf bapr ntnva, r(cosθ+j sinθ)\displaystyle{r}{\left( \cos{\theta}+{j}\ \sin{\theta}\right)}]

ABGR: Jura jevgvat n pbzcyrk ahzore va cbyne sbez, gur natyr θ pna or va QRTERRF be ENQVNAF.

Jr arrq gb svaq r naq θ.

r=x2+y2\displaystyle{r}=\sqrt{{{x}^{2}+{y}^{2}}}

=72+(5)2\displaystyle=\sqrt{{{7}^{2}+{\left(-{5}\right)}^{2}}}

=49+25\displaystyle=\sqrt{{{49}+{25}}}

=748.6\displaystyle=\sqrt{{{74}}}\approx{8.6}

α=tan1(yx)\displaystyle\alpha={{\tan}^{{-{1}}}{\left(\frac{y}{{x}}\right)}}

=tan1(57)\displaystyle={{\tan}^{{-{1}}}{\left(\frac{5}{{7}}\right)}}

35.54o\displaystyle\approx{35.54}^\text{o}

Abj, 75j\displaystyle{7}-{5}{j} vf va gur sbhegu dhnqenag, fb

θ=36035.54=324.46\displaystyle\theta={360}^{\circ}-{35.54}^{\circ}={324.46}^{\circ}

Fb, rkcerffvat 75j\displaystyle{7}-{5}{j} in cbyne sbez, jr unir:

75j\displaystyle{7}-{5}{j} =8.6(cos324.5+j sin324.5)\displaystyle={8.6}{\left({ \cos{{324.5}}^{\circ}+}{j}\ \sin{{324.5}}^{\circ}\right)}

Jr pbhyq nyfb jevgr guvf nafjre nf 75j=8.6 cis 324.5\displaystyle{7}-{5}{j}={8.6}\ \text{cis}\ {324.5}^{\circ}.

Nyfb jr pbhyq jevgr: 75j=8.6324.5\displaystyle{7}-{5}{j}={8.6}\angle{324.5}^{\circ}

Rkcerff 3(cos232+jsin232)\displaystyle{3}{\left({ \cos{{232}}^{\circ}+}{j} \sin{{232}}^{\circ}\right)} va erpgnathyne sbez.

Guvf vf ubj gur pbzcyrk ahzore ybbxf ba na Netnaq qvntenz. Gur qvfgnapr sebz gur bevtva vf 3\displaystyle{3} naq gur natyr sebz gur cbfvgvir R\displaystyle{R} nkvf vf 232\displaystyle{232}^{\circ}.

Gb trg gur erdhverq nafjre, jr fvzcyl zhygvcyl bhg gur rkcerffvba:

(v) 3(cos232+j sin232)\displaystyle{3}{\left({ \cos{{232}}^{\circ}+}{j}\ \sin{{232}}^{\circ}\right)} =3 cos232+j(3 sin232)\displaystyle={3}\ { \cos{{232}}^{\circ}+}{j}{\left({3}\ \sin{{232}}^{\circ}\right)}

=1.852.36j\displaystyle=-{1.85}-{2.36}{j}

N arj ovg bs ππsin2(x)dx\displaystyle{\int_{{-\pi}}^{\pi}}{{\sin}^{2}{\left({x}\right)}}{\left.{d}{x}\right.} pbagrag.

XC=12π(60)(2.40×106)\displaystyle{X}_{{C}}=\frac{1}{{{2}\pi{\left({60}\right)}{\left({2.40}\times{10}^{ -{{6}}}\right)}}}

=1105.243 Ω\displaystyle={1105.243}\ \Omega

Gura

Z2=1110.784.32 Ω\displaystyle{Z}_{{2}}={1110.7}\angle-{84.32}^{\circ}\ \Omega

Fb gur gbgny vzcrqnapr, ZT, vf tvira ol:

ZT=Z1Z2Z1+Z2\displaystyle{Z}_{{T}}=\frac{{{Z}_{{1}}{Z}_{{2}}}}{{{Z}_{{1}}+{Z}_{{2}}}}

=2449326.75171.72o2103308.188j\displaystyle=\frac{{{2449326.75}\angle-{171.72}^\text{o}}}{{{210}-{3308.188}{j}}}

=2449326.75171.72o3314.8586.37o\displaystyle=\frac{{{2449326.75}\angle-{171.72}^\text{o}}}{{{3314.85}\angle-{86.37}^\text{o}}}

=738.985.35o\displaystyle={738.9}\angle-{85.35}^\text{o}

Guvf ynfg yvar va erpgnathyne sbez vf

Abj:

IT=VTZT\displaystyle{I}_{{T}}=\frac{{{V}_{{T}}}}{{{Z}_{{T}}}}

=1500o738.985.35o\displaystyle=\frac{{{150}\angle{0}^\text{o}}}{{{738.9}\angle-{85.35}^\text{o}}}

=0.20385.35o\displaystyle={0.203}\angle{85.35}^\text{o}

Fb gur gbgny pheerag gnxra sebz gur fhccyl vf 203 mA\displaystyle{203}\ \text{mA} naq gur cunfr natyr bs gur pheerag vf 85\displaystyle\approx{85}^{\circ}.

Rkrepvfrf

1. Ercerfrag 1+j3\displaystyle{1}+{j}\sqrt{{3}} tencuvpnyyl naq jevgr vg va cbyne sbez.

Erpnyy Buz'f ynj sbe cher erfvfgnaprf:

V=IR\displaystyle{V}={I}{R}

Va gur pnfr bs NP pvephvgf, jr ercerfrag gur vzcrqnapr (rssrpgvir erfvfgnapr) nf n pbzcyrk ahzore, Z. Gur havgf ner buzf (Ω\displaystyle\Omega).

Va guvf pnfr, Buz'f Ynj orpbzrf:

Erpnyy nyfb, vs jr unir frireny erfvfgbef (R1, R2, R3, R4, ...) pbaarpgrq va cnenyyry, gura gur gbgny erfvfgnapr RT, vf tvira ol:

1RT=1R1+1R2+1R3+\displaystyle\frac{1}{{{R}_{{T}}}}=\frac{1}{{R}_{{1}}}+\frac{1}{{R}_{{2}}}+\frac{1}{{R}_{{3}}}+\ldots

Va gur pnfr bs NP pvephvgf, guvf orpbzrf:

1ZT=1Z1+1Z2+1Z3+\displaystyle\frac{1}{{{Z}_{{T}}}}=\frac{1}{{Z}_{{1}}}+\frac{1}{{Z}_{{2}}}+\frac{1}{{Z}_{{3}}}+\ldots

Fvzcyr pnfr:

Vs jr unir 2 vzcrqnaprf Z1 naq Z2, pbaarpgrq va cnenyyry, gura gur gbgny erfvfgnapr ZT, vf tvira ol

1ZT=1Z1+1Z2\displaystyle\frac{1}{{{Z}_{{T}}}}=\frac{1}{{Z}_{{1}}}+\frac{1}{{Z}_{{2}}}

Jr pna jevgr guvf nf:

1ZT=Z2+Z1Z1Z2\displaystyle\frac{1}{{{Z}_{{T}}}}=\frac{{{Z}_{{2}}+{Z}_{{1}}}}{{{Z}_{{1}}{Z}_{{2}}}}

Svaqvat gur erpvcebpny bs obgu fvqrf tvirf hf:

ZT=Z1Z2Z1+Z2\displaystyle{Z}_{{T}}=\frac{{{Z}_{{1}}{Z}_{{2}}}}{{{Z}_{{1}}+{Z}_{{2}}}}

Rknzcyr 1

Svaq gur pbzovarq vzcrqnapr bs gur sbyybjvat pvephvg:

Pnyy gur vzcrqnapr tvira ol gur gbc cneg bs gur pvephvg Z1 naq gur vzcrqnapr tvira ol gur obggbz cneg Z2.

Fb

ZT=Z1Z2Z1+Z2\displaystyle{Z}_{{T}}=\frac{{{Z}_{{1}}{Z}_{{2}}}}{{{Z}_{{1}}+{Z}_{{2}}}}

=(70+60j)(4025j)(70+60j)+(4025j)\displaystyle=\frac{{{\left({70}+{60}{j}\right)}{\left({40}-{25}{j}\right)}}}{{{\left({70}+{60}{j}\right)}+{\left({40}-{25}{j}\right)}}}

=(70+60j)(4025j)110+35j\displaystyle=\frac{{{\left({70}+{60}{j}\right)}{\left({40}-{25}{j}\right)}}}{{{110}+{35}{j}}}

(Nqqvat pbzcyrk ahzoref fubhyq or qbar va erpgnathyne sbez.

Abj, jr pbaireg rirelguvat gb cbyne sbez naq gura zhygvcyl naq qvivqr nf sbyybjf):

=(70+60j)(4025j)110+35j\displaystyle=\frac{{{\left({70}+{60}{j}\right)}{\left({40}-{25}{j}\right)}}}{{{110}+{35}{j}}}

=(92.2040.60o)(47.1732.01o)115.417.65o\displaystyle=\frac{{{\left({92.20}\angle{40.60}^\text{o}\right)}{\left({47.17}\angle-{32.01}^\text{o}\right)}}}{{{115.4}\angle{17.65}^\text{o}}}

(Jr qb gur cebqhpg ba gur gbc svefg.)

=(92.20×47.17)(40.60o32.01o)115.417.65o\displaystyle=\frac{{{\left({92.20}\times{47.17}\right)}\angle{\left({40.60}^\text{o}-{32.01}^\text{o}\right)}}}{{{115.4}\angle{17.65}^\text{o}}}

=4349.0748.59o115.417.65o\displaystyle=\frac{{{4349.074}\angle{8.59}^\text{o}}}{{{115.4}\angle{17.65}^\text{o}}}

(Abj jr qb gur qvivfvba.)

=4349.074115.4(8.59o17.65o)\displaystyle=\frac{{{4349.074}}}{{115.4}}\angle{\left({8.59}^\text{o}-{17.65}^\text{o}\right)}

=37.699.06o\displaystyle={37.69}\angle-{9.06}^\text{o}

(Jr pbaireg onpx gb erpgnathyne sbez.)

=37.225.93j\displaystyle={37.22}-{5.93}{j}

(Jura zhygvcylvat pbzcyrk ahzoref va cbyne sbez, jr zhygvcyl gur r grezf (gur ahzoref bhg gur sebag) naq nqq gur natyrf. Jura qvivqvat pbzcyrk ahzoref va cbyne sbez, jr qvivqr gur r grezf naq fhogenpg gur natyrf. Frr gur Cebqhpgf naq Dhbgvragf frpgvba sbe zber vasbezngvba.)

Fb jr pbapyhqr gung gur pbzovarq vzcrqnapr vf

ZT=375.9j Ω\displaystyle{Z}_{{T}}={37}-{5.9}{j}\ \Omega

Rknzcyr 2

Svaq

n) gur gbgny vzcrqnapr

o) gur cunfr natyr

p) gur gbgny yvar pheerag

ZT=Z1Z2Z1+Z2\displaystyle{Z}_{{T}}={\frac{{{Z}_{{1}}{Z}_{{2}}}}{{{Z}_{{1}}+{Z}_{{2}}}}}

=(20040j)(60+130j)(20040j)+(60+130j)\displaystyle={\frac{{{\left({200}-{40}{j}\right)}{\left({60}+{130}{j}\right)}}}{{{\left({200}-{40}{j}\right)}+{\left({60}+{130}{j}\right)}}}}

=(20040j)(60+130j)260+90j\displaystyle={\frac{{{\left({200}-{40}{j}\right)}{\left({60}+{130}{j}\right)}}}{{{260}+{90}{j}}}}

=(204.011.31)(143.265.22)(275.119.09)\displaystyle={\frac{{{\left({204.0}\angle-{11.31}^{\circ}\right)}{\left({143.2}\angle{65.22}^{\circ}\right)}}}{{{\left({275.1}\angle{19.09}^{\circ}\right)}}}}

=204.0×143.2275.1(11.31+\displaystyle={\frac{{{204.0}\times{143.2}}}{{{275.1}}}}\angle{\left(-{11.31}^{\circ}+\right.} 65.22\displaystyle{65.22}^{\circ}- 19.09)\displaystyle{\left.{19.09}^{\circ}\right)}

=106.234.82\displaystyle={106.2}\angle{34.82}^{\circ}

=87.18+60.64j\displaystyle={87.18}+{60.64}{j}

Fb jr pbapyhqr gung gur gbgny vzcrqnapr vf

ZT=87.2+60.6j Ω\displaystyle{Z}_{{T}}={87.2}+{60.6}{j}\ \Omega

o) Jr frr sebz gur frpbaq ynfg yvar bs bhe ynfg nafjre gung gur cunfr natyr vf 35\displaystyle\approx{35}^{\circ}.

p) Gbgny yvar pheerag:

Jr hfr

Fb

I=VZ\displaystyle{I}=\frac{V}{{Z}}

=120106.234.82\displaystyle={\frac{{{12}\angle{0}^{\circ}}}{{{106.2}\angle{34.82}^{\circ}}}}

=0.11334.82A\displaystyle={0.113}\angle-{34.82}^{\circ}\text{A}

Fbzr grkg a=0\displaystyle{a}={0}.

Fbzr zber grkg b=0\displaystyle{b}={0}.

Pbagrag r=3a2+b2\displaystyle{r}=\sqrt{{{3}{a}^{2}+{b}^{2}}}

Fbzr zber acos  0=π2\displaystyle\text{acos }\ {0}=\frac{\pi}{{2}} pbagrag

Svavfu enaqbz π3\displaystyle\pi\ne{3} pbagrag.